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Abstract—We consider cooperative multi-agent resource shar-
ing problems over an undirected network of agents, where only
those agents connected by an edge can directly communicate.
The objective is to minimize the sum of agent-specific composite
convex functions subject to a conic constraint that couples agents’
decisions. A distributed primal-dual algorithm is proposed to
solve the saddle point formulation, which requires to compute
a consensus dual price for the coupling constraint. We provide
convergence rates in sub-optimality, infeasibility and consensus
violation for agents’ dual price assessments; examine the effect
of underlying network topology on the convergence rates of the
proposed decentralized algorithm; and compare our method with
Prox-JADMM algorithm on the basis pursuit problem.

I. INTRODUCTION

Let G = (N , E) denote a connected undirected graph of

N computing nodes, where N , {1, . . . , N} and E ⊆ N ×
N is the set of edges – without loss of generality, suppose
(i, j) ∈ E implies i < j. Suppose nodes i and j can exchange
information only if (i, j) ∈ E , and each node i ∈ N has a
private (local) cost function Φi : R

ni → R∪{+∞} such that

Φi(ξi) , ρi(ξi) + fi(ξi), (1)

where ρi : R
ni → R ∪ {+∞} is a proper, closed convex

function (possibly non-smooth), and fi : R
ni → R is a smooth

convex function. Assume that fi is differentiable on an open
set containing dom ρi with a Lipschitz continuous gradient
∇fi, of which Lipschitz constant is Li; the prox map of ρi,

proxρi
(ξi) , argmin

xi∈R
ni

{
ρi(xi) +

1
2
‖xi − ξi‖

2} , (2)

is efficiently computable for i ∈ N , where ‖.‖ denotes the

Euclidean norm. Let Ni , {j ∈ N : (i, j) ∈ E or (j, i) ∈ E}
denote the set of neighboring nodes of i ∈ N , and di , |Ni|
is the degree of node i ∈ N . Let Rn 3 ξ = [ξi]i∈N such that

n ,
∑

i∈N ni. Consider the following minimization problem:

min
ξ∈Rn

∑

i∈N

Φi(ξi) s.t.
∑

i∈N

Riξi − ri ∈ K, (3)

where closed, convex cone K ⊆ Rm, Ri ∈ R
m×ni and ri ∈

R
m are the problem data such that each node i ∈ N only have

access to Ri, ri and K along with its objective Φi(ξi) defined

in (1). Our objective is to solve (3) in a decentralized fashion

using the computing nodes N and exchanging information

only along the edges E . In this paper, we only consider the

case when the topology of the connectivity graph is static – in

a recent preprint [1], we extended our results to time-varying

connectivity graphs.

In the remainder of this section, we briefly discuss some pre-

vious work related to ours, and give a specific implementation

of the primal-dual algorithm (PDA) proposed in [2]. Next, in

Section II, we consider the multi-agent sharing problem in (3),

provide a distributed implementation of PDA for solving (3),

and establish error bounds under the following assumption.

Assumption 1. A primal-dual optimal solution to (3) exists

and the duality gap is 0.

A. Related Work

Now we briefly review some recent work on the distributed

solution of a resource sharing problem among a set of

agents, N , communicating over the network G = (N , E)
where the objective is to minimize the sum of local con-

vex functions subject to some coupling constraints on local

decisions. In [3] an asynchronous distributed method based

on ADMM is proposed. This algorithm can handle coupling

constraints with very particular structure on a static network:

minξ,z
∑

i∈N Φi(ξi) subject to Dξ + Hz = 0, z ∈ Z, and

ξi ∈ Xi for i ∈ N , where ξ = [ξi]i∈N is the vector of

local decision variables, z is the coupling variable, Xi’s and

Z are closed convex sets, H is diagonal and invertible, and

each row of D has exactly one nonzero element while D has

no columns of all zeros. Under the compactness assumption

on X = Πi∈NXi and Z, it is shown that the method has

O(1/k) convergence rate in terms of expected suboptimality

and feasibility violation – in each iteration exact minimizations

involving Φi is needed.

In [4], a method based on ADMM is proposed to reduce

the computational work of ADMM due to exact minimizations

in each iteration. First, a dual consensus ADMM is proposed

for solving (3) in a distributed fashion when K = {0}, and

Φi(ξi) = ρi(ξi)+fi(Aiξi) for ρi and fi as in (1). Under strong

duality assumption, it is shown that dual iterate sequence con-

verges and every limit point of the primal sequence is optimal

without giving a rate result. Next, to avoid exact minimizations

in ADMM, an inexact variant taking proximal-gradient steps

is analyzed. Convergence of primal-dual sequence is shown

when each fi is strongly convex – without a rate result; and



a linear rate is given in the absence of the non-smooth ρi,
i.e., Φi(ξi) = fi(Aiξi), and when each Ei has full row-rank

and Φi is strongly convex. In [5] a proximal dual consensus

ADMM method is proposed by Chang, under static network

topology assumption. The objective is to minimize the sum of

convex functions
∑

i∈N Φi subject to coupling equality and

agent-specific constraints. Each agent-specific set is assumed

to be an intersection of a polyhedron and a “simple” set. The

polyhedral constraints are handled using a penalty formulation

without requiring projection onto them. Chang also proposed a

randomized variant which can handle randomly on/off agents

and imperfect communication links. It is shown that both

algorithms have O(1/k) convergence rate; that said, in each

iteration, costly exact minimizations involving Φi is needed.

In [6], a general setting for constrained distributed optimiza-

tion in a time-varying network topology has been considered to

minimize a composition of a global network function (smooth)

with the summation of local objective functions (smooth),

subject to inequality constraints on the summation of agent

specific constrained functions and local compact sets. They

propose a consensus-based distributed primal-dual perturba-

tion (PDP) algorithm and show that the local primal-dual

iterates converges to a global optimal primal-dual solution;

however, no rate result was provided. The proposed PDP

method can also handle non-smooth constraints with similar

convergence guarantees. More recently, in [7], distributed

continuous-time coordination algorithms are proposed to min-

imize convex separable objective subject to coupling equality

and convex inequality constraints. Assuming the objective and

constraint functions are Lipschitz, point-wise convergence is

established without providing a rate result.

Finally, while we were preparing this paper, we became

aware of a recent work [8], which also use dual consensus

formulation to decompose separable constraints. A distributed

algorithm on time-varying directed communication networks

is proposed for solving saddle-point problems subject to con-

sensus constraints. The algorithm can also be applied to solve

consensus optimization problems with inequality constraints

that can be written as summation of local convex functions of

local and global variables. Assuming each agents local iterates

and subgradient sets are uniformly bounded, it is shown

that the ergodic average of primal-dual sequence converges

with O(1/
√
k) rate in terms of saddle-point evaluation error;

however, when applied to constrained optimization problems,

no rate in terms of suboptimality and infeasibility is provided.

B. Preliminary

There has been active research on developing effi-
cient algorithms for convex-concave saddle point problems
minx maxy L(x,y), e.g., [9], [10], [11], [12]. Recently, a
primal-dual algorithm (PDA) is proposed in [2] for the fol-
lowing composite convex-concave saddle-point problem:

min
x∈X

max
y∈Y
L(x,y) , Φ(x) + 〈Tx,y〉 − h(y), (4)

where X and Y are finite-dimensional vector spaces, Φ(x) ,
ρ(x) + f(x), ρ and h are possibly non-smooth convex func-
tions, f is a convex function and has a Lipschitz continuous

gradient defined on dom ρ with constant L. Briefly, given
x0,y0 and algorithm parameters νx, νy > 0, PDA consists of
two proximal-gradient steps:

x
k+1 ← argmin

x

ρ(x) + f(xk) + 〈∇f(xk), x− x
k〉

+ 〈Tx,yk〉+ 1
νx

Dx(x,x
k) (5a)

y
k+1 ← argmin

y

h(y)− 〈T (2xk+1 − x
k),y〉+ 1

νy
Dy(y,y

k),

(5b)

where Dx and Dy are Bregman distance functions corre-
sponding to some continuously differentiable strongly convex
functions ψx and ψy such that domψx ⊃ dom ρ and

domψy ⊃ domh. In particular, Dx(x, x̄) , ψx(x) −
ψx(x̄)−〈∇ψx(x̄), x− x̄〉, and Dy is defined similarly. In [2],
a simple proof for the ergodic convergence is provided; indeed,
it is shown that, when the convexity modulus for ψx and ψy is
1, if νx, νy > 0 are chosen such that ( 1

νx
−L) 1

νy
≥ σ2

max(T ),
then for any x,y ∈ X ×Y , the following holds for all K ≥ 1:

L(x̄K ,y)− L(x, ȳK) (6)

≤
1

K

( 1

νx
Dx(x,x

0) +
1

νy
Dy(y,y

0)−
〈
T (x− x

0),y − y
0〉 )

where x̄K , 1
K

∑K
k=1 x

k and ȳK , 1
K

∑K
k=1 y

k.

First, in Theorem 1, we discuss a special case of (4), which

will help us develop a decentralized algorithm for the sharing

problem in (3), and allow us to establish its convergence. The

proposed algorithm can distribute the computation over the

nodes such that each node’s computation is based on the local

topology of G and information only available to that node.

It is worth mentioning the connection between PDA and the

alternating direction method of multipliers (ADMM). Indeed,

under certain settings, (preconditioned) ADMM is equivalent

to PDA [2], [10]. There is also a strong connection between the

linearized ADMM algorithm, PG-ADMM, proposed by Aybat

et al. [13] and PDA – for details of these relations, see [1].

Notation. Throughout the paper, ‖·‖ denotes the Euclidean

or the spectral norm depending on its argument, i.e., for a

matrix R, ‖R‖ = σmax(R). Given a convex set S , let 1S(·) de-

note the indicator function of S , i.e., 1S(w) = 0 for w ∈ S and

equal to +∞ otherwise, and let PS(w) , argmin{‖v − w‖ :
v ∈ S} denote the projection onto S . For a closed convex set

S , we define the distance function as dS(w) , ‖PS(w)− w‖.
Given a convex cone K ∈ R

m, let K∗ denote its dual cone,

i.e., K∗ , {θ ∈ R
m : 〈θ, w〉 ≥ 0 ∀w ∈ K}, and K◦ , −K∗

denote the polar cone of K. Cone K is called proper if it is

closed, convex, pointed, and it has a nonempty interior. Given

a convex function g : Rn → R∪ {+∞}, its convex conjugate

is g∗(w) , supθ∈Rn 〈w, θ〉 − g(θ). ⊗ denotes the Kronecker

product, and In is the n× n identity matrix.

Definition 1. Let X , Πi∈NR
ni × R

n0 and X 3 x =
[ξ>w>]> and ξ = [ξi]i∈N ; and Y , Πi∈NR

m, Y 3 y =
[yi]i∈N , and Π denotes the Cartesian product. Given param-

eters γ > 0, and τi, κi > 0 for i ∈ N , let Dγ , 1
γ
In0

, Dτ ,

diag([ 1
τi
Ini

]i∈N ), and Dκ , diag([ 1
κi
Im]i∈N ). Defining

ψx(x) ,
1
2ξ

>Dτξ+
1
2w

>Dγw and ψy(y) ,
1
2y

>Dκy leads

to the following Bregman distance functions: Dx(x, x̄) =



1
2

∥∥ξ − ξ̄
∥∥2
Dτ

+ 1
2 ‖w − w̄‖2Dγ

, and Dy(y, ȳ) =
1
2 ‖y − ȳ‖2Dκ

,

where the Q-norm is defined as ‖z‖Q , (z>Qz)
1
2 for Q � 0.

Theorem 1. Let X , Y , and Bregman functions Dx, Dy be

as in Definition 1. Suppose Φi = ρi + fi is composite convex

function defined as in (1) for i ∈ N ; ρ0 : Rn0 → R ∪ {+∞}
and hi : R

m → R∪{+∞} for i ∈ N are proper, closed convex

functions with simple prox-maps. Let Φ(x) , ρ(x)+f(x) and

h(y) ,
∑

i∈N hi(yi), where ρ(x) , ρ0(w) +
∑

i∈N ρi(ξi)

and f(x) ,
∑

i∈N fi(ξi). Given matrix T ∈ R
m|N |×(n+n0)

and the initial point (x0,y0), the PDA iterate sequence

{xk,yk}k≥1, generated according to (5) when νx = νy = 1

satisfies (6) for all K ≥ 1 if Q̄ ,

[
D −T>

−T Dκ

]
� 0,

where D ,

[
D̄τ 0
0 Dγ

]
, and D̄τ , diag([( 1

τi
− Li)Ini

]i∈N ).

Moreover, if a saddle point exists for (4), and Q̄ � 0,

then {xk,yk}k≥1 converges to a saddle point of (4); hence,

{x̄k, ȳk}k≥1 converges to the same point.

Although the proof of Theorem 1 follows from the lines of

[2], we provide the proof here for the sake of completeness.

To this end, we prove the following key lemma first.

Lemma 1. Let z = [x>y>]> for x ∈ X , y ∈ Y . For any
x ∈ X , and y ∈ Y , the iterate sequence {zk}k≥1 defined as
in the statement of Theorem 1 satisfies for all k ≥ 0

L(xk+1,y)− L(x,yk+1)

≤
[
Dx(x,x

k) +Dy(y,y
k)−

〈
T (x− x

k), y − y
k
〉]

−
[
Dx(x,x

k+1) +Dy(y,y
k+1)−

〈
T (x− x

k+1), y − y
k+1

〉]

−
1

2
(zk+1 − z

k)>Q̄(zk+1 − z
k). (7)

Proof. Fix νx = 1. Since ρ is a proper, closed, convex function
and Dx is a Bregman function, Property 1 in [14] applied to
(5a) implies that

ρ(x)− ρ(xk+1) +
〈
∇f(xk) + T>

y
k, x− x

k+1
〉

≥ Dx(x,x
k+1)−Dx(x,x

k) +Dx(x
k+1,xk). (8)

Convexity of fi and Lipschitz continuity of ∇fi implies that

fi(ξi) ≥ fi(ξ
k
i ) +

〈
∇fi(ξ

k
i ), ξi − ξki

〉

≥ fi(ξ
k+1
i ) +

〈
∇fi(ξ

k
i ), ξi − ξk+1

i

〉
−

Li

2

∥∥∥ξk+1
i − ξki

∥∥∥
2

.

Summing this inequality over i ∈ N , combining the sum with
(8) and from the definition of D, we get

Φ(x)− Φ(xk+1) +
〈
T (x− x

k+1), y
k
〉

≥ Dx(x,x
k+1)−Dx(x,x

k) + 1
2

∥∥∥xk+1 − x
k
∥∥∥
2

D
. (9)

Fix νy = 1. Since h is a proper, closed, convex function and
Dy is a Bregman function, Property 1 in [14] applied to (5b)
implies that

h(y)− h(yk+1) +
〈
T (2xk+1 − x

k), y
k+1 − y

〉

≥ Dy(y,y
k+1)−Dy(y,y

k) + 1
2

∥∥∥yk+1 − y
k
∥∥∥
2

Dκ

. (10)

Summing (9) and (10) gives the desired result.

Proof of Theorem 1: Since Q̄ � 0, we can drop the last

term in (7) for each k ≥ 0. Next, after summing it for k =
0, . . . ,K−1, we divide the resulting inequality by K and use

Jensen’s inequality to get (6) for νx = νy = 1 because we also

have Dx(x,x
K)+Dy(y,y

K)−
〈
T (x− xK), y − yK

〉
≥ 0,

which follows from Q̄ � 0.

Now suppose Q̄ � 0, and let z∗ = [x∗>y∗>]> be a saddle
point for (4). From the definition of Q̄, for all z, z′, we have

Dx(x,x
′) +Dy(y,y

′)−
〈
T (x− x

′), y − y
′〉 ≥ 1

2

∥∥z− z
′
∥∥2

Q̄
.

(11)

Evaluating (7) at z = z∗, we get k ≥ 0

0 ≤ L(xk+1,y∗)− L(x∗,yk+1) ≤
[
Dx(x

∗,xk) +Dy(y
∗,yk)− 〈T (x∗ − x

k), y
∗ − y

k〉
]

−
[
Dx(x

∗,xk+1) +Dy(y
∗,yk+1)− 〈T (x∗ − x

k+1),y∗ − y
k+1〉

]

− 1
2

∥∥∥zk+1 − z
k
∥∥∥
2

Q̄
; (12)

hence, we get for all k ≥ 0

1
2

∥∥∥zk+1 − z
∗
∥∥∥
2

Q̄

≤ Dx(x
∗,x0) +Dy(y

∗,y0)−
〈
T (x∗ − x

0), y
∗ − y

0〉 .

Therefore, both {zk} and {z̄k} are bounded sequences. Hence,

there is a subsequence {zkn}n≥1 converging to a limit point ẑ.

From (12), it follows that
∑∞

k=0

∥∥zk+1 − zk
∥∥2
Q̄
< ∞. Since

Q̄ � 0, for any ε > 0, there exists N1 such that for all

n ≥ N1, we have
∥∥zkn+1 − zkn

∥∥ < ε
2 . From the fact that

zkn → ẑ, there exists N2 such that for all n ≥ N2, we have∥∥zkn − ẑ
∥∥ < ε

2 . Therefore, by letting N = max{N1, N2} we

get
∥∥zkn+1 − ẑ

∥∥, i.e., zkn+1 → ẑ.

The optimality conditions for (5) imply that for all n ∈ Z+,

we have qn ∈ ∂ρ(xkn+1) and pn ∈ ∂h(ykn+1), where

qn , ∇ψx(x
kn)−∇ψx(x

kn+1)−
(
∇f(xkn) + T>ykn

)
,

pn , ∇ψy(y
kn)−∇ψy(y

kn+1) + T>
(
2xkn+1 − xkn

)
.

Since∇ψx and∇ψy are continuously differentiable on dom ρ
and domh, respectively, and since ρ and h are proper, closed
convex functions, it follows from Theorem 24.4 in [15] that

∂ρ(x̂) 3 lim
n

q
n = −∇f(x̂)− T>

ŷ, and ∂h(ŷ) 3 lim
n

p
n = T x̂,

which also implies that ẑ is a saddle point of (4).
Since Q̄ � 0, and (12) holds for any saddle point z∗, setting

z∗ = ẑ gives us a nonincreasing sequence {sk}k≥0, where

0 ≤ sk , Dx(x̂,x
k) +Dy(ŷ,y

k)−
〈
T (x̂− x

k), ŷ − y
k
〉
. (13)

Note s , limk s
k ≥ 0 exists. Thus, s = limn s

kn ; and since
limn

〈
T (x̂− xkn), ŷ − ykn

〉
= 0 (from zkn → ẑ),

s = lim
n→∞

Dx(x̂,x
kn) +Dy(y

∗,ykn) = 0.

Therefore, zk → ẑ follows from (13) and (11).



II. DISTRIBUTED METHOD FOR RESOURCE SHARING

Suppose K in (3) is a proper cone. Let ξi ∈ R
ni denote the

local decision vector of node i ∈ N . We can reformulate (3)
as the following saddle point problem:

min
ξ

max
y∈K◦

{
∑

i∈N

Φi(ξi) + 〈
∑

i∈N

Riξi − ri, y〉

}
, (14)

where y ∈ R
m denotes the dual variable for (3). Next, (14)

can be written as a dual consensus formation problem:

min
ξ

max
yi∈K◦

yi=yj (i,j)∈E

{
∑

i∈N

(
Φi(ξi) + 〈Riξi − ri, yi〉

)}
. (15)

The consensus constraints yi = yj for (i, j) ∈ E can be

formulated as My = 0, where M , H ⊗ Im ∈ R
m|E|×m|N |

and H is the oriented edge-node incidence matrix, i.e., the

entry H(i,j),l, corresponding to edge (i, j) ∈ E and l ∈ N ,

is equal to 1 if l = i, −1 if l = j, and 0 otherwise. Note

that MTM = HTH ⊗ Im = Ω ⊗ Im, where Ω ∈ R
|N |×|N|

denotes the graph Laplacian of G, i.e., Ωii = di, Ωij = −1 if

(i, j) ∈ E or (j, i) ∈ E , and equal to 0 otherwise.
Define Lagrangian function L:

L(ξ,w,y) ,
∑

i∈N

(
Φi(ξi) + 〈Riξi − ri, yi〉

)
− 〈w,My〉 ; (16)

hence, (15) can be equivalently written as follows

min
ξ

max
y∈Πi∈NK◦

min
w
L(ξ,w,y) = min

ξ,w
max

y∈Πi∈NK◦
L(ξ,w,y) (17)

where the last equality is justified since K is a pointed cone,

hence int (K◦) 6= ∅; therefore, for each fixed ξ, inner max
and min can be interchanged.

Next, we study the distributed implementation of PDA in

(5a)-(5b) to solve (17). Define the block-diagonal matrix R ,

diag([Ri]i∈N ) ∈ R
m|N |×n and T = [R −M>]. Therefore,

given the initial iterates ξ0,w0,y0 and parameters γ > 0,
τi, κi > 0 for i ∈ N , choosing Dx and Dy as defined in
Definition 1, and setting νx = νy = 1, PDA iterations in
(5a)-(5b) take the following form for k ≥ 0:

ξi
k+1 ← argmin

ξi

ρi(ξi) + fi(ξ
k
i ) + 〈∇f(ξ

k
i ), ξi − ξki 〉 (18a)

+ 〈Riξi − ri, y
k
i 〉+

1

2τi
‖ξi − ξki ‖

2

w
k+1 ← argmin

w

{
−〈My

k,w〉+
1

2γ
‖w −w

k‖2
}

= w
k + γ My

k
(18b)

y
k+1 ← argmin

y∈Πi∈NK◦

〈2wk+1 −w
k,My〉 (18c)

+
∑

i∈N

[
− 〈Ri(2ξ

k+1
i − ξki )− ri, yi〉+

1

2κi

‖yi − yk
i ‖

2
]
.

Using recursion in w update rule in (18), we can write wk+1

as a partial summation of dual iterates yk, i.e., wk = w0 +
γ
∑k−1

`=0 My`. Let w0 ← 0, and sk , yk +
∑k

`=0 y
` for

k ≥ 0; since M>M = Ω⊗ Im we obtain

〈My, 2wk+1 −w
k〉 = γ 〈y, (Ω⊗ Im)sk〉

= γ
∑

i∈N

〈yi,
∑

j∈Ni

(ski − skj )〉.

Thus, PDA iterations given in (18) for the static graph G
can be computed in decentralized way, via the node-specific

computations as in Algorithm DPDA-S displayed in Fig. 1.

Algorithm DPDA-S ( ξ0,y0, γ, {τi, κi}i∈N )

Initialization: s0i ← 2y0
i , i ∈ N

Step k: (k ≥ 0)

1. ξk+1
i ← proxτiρi

(
ξki − τi

(
∇fi(ξ

k
i ) +R>

i y
k
i

))
, i ∈ N

2. pk+1
i ←

∑
j∈Ni

(skj − ski ), i ∈ N

3. yk+1
i ← PK◦

[
yk
i +κi

(
Ri(2ξ

k+1
i −ξki )−ri+γpk+1

i

)]
, i ∈ N

4. sk+1
i ← yk+1

i +
∑k+1

`=0 y`
i , i ∈ N

Fig. 1. Distributed Primal Dual Algorithm for Static G (DPDA-S)

The O(1/K) rate for DPDA-S, given in (6), follows from

Theorem 1 with the help of following technical lemma.

Lemma 2. Given {τi, κi}i∈N and γ such that γ > 0, and

τi > 0, κi > 0 for i ∈ N , Q̄ ,

[
D̄τ 0 −R>

0 Dγ M
−R M> Dκ

]
� 0 if

{τi, κi}i∈N and γ are chosen such that 1
τi
> Li, and

( 1

τi
− Li

)( 1

κi

− 2γdi
)
≥ ‖Ri‖

2 , ∀ i ∈ N . (19)

Moreover, Q̄ � 0 if (19) holds with strict inequality.

Proof. Let P ,

[
In 0 0
0 0 Im|N|

0 Im|E| 0

]
be permutation ma-

trix. Hence, Q̄ � 0 is equivalent to PQ̄P−1 � 0.
Since Dγ � 0, Schur complement condition implies that

PQ̄P−1 =

[
D̄τ −R> 0
−R Dκ M>

0 M Dγ

]
� 0 if and only if

B − γ

[
0 0
0 M>M

]
� 0 where B ,

[
D̄τ −R>

−R Dκ

]
. (20)

Moreover, since D̄τ � 0, again using Schur complement and

the fact that M>M = Ω ⊗ Im, one can conclude that (20)

holds if and only if Dκ − γ(Ω ⊗ In) − RD̄−1
τ R> � 0. By

definition Ω = diag([di]i∈N ) − E, where Eii = 0 for all

i ∈ N and Eij = Eji = 1 if (i, j) ∈ E or (j, i) ∈ E . Note

that diag([di]i∈N ) + E � 0 since it is diagonally dominant.

Therefore, Ω � 2diag([di]i∈N ). Hence, it is sufficient to have

( 1
κi
− 2γdi)Im − ( 1

τi
− Li)

−1RiR
>
i � 0 for all i ∈ N , and

this condition holds if (20) is true. By the same argument, if

(20) holds with strict inequality, then Q̄ � 0.

Remark II.1. Note that for all i ∈ N by choosing τi =
1

ci+Li
,

κi =
ci

2ciγdi+‖Ri‖
2 for any ci > 0, the condition in Lemma 2

is satisfied.

Next, we refine the error bound in (6), and quantify the sub-

optimality and infeasibility of the DPDA-S iterate sequence.

Theorem 2. Suppose Assumption 1 holds. Let {ξk,yk}k≥0
be the DPDA-S iterate sequences generated as in Fig. 1,
initialized from an arbitrary ξ0 and y0 = 0. Define

wk , γ
∑k−1

`=0 My` for k ≥ 1. Let primal-dual step-sizes



{τi, κi}i∈N and γ be chosen such that the condition (19)

holds with strict inequality. Then {(ξk,wk,yk)} converges
to (ξ∗,w∗,y∗), a saddle point of (17) such that y∗

i = y∗ for
all i ∈ N and (ξ∗, y∗) is a primal-dual optimal solution to
(3); and the following error bounds hold for all K ≥ 1:

‖w∗‖
∥∥∥M ȳ

K
∥∥∥+ ‖y∗‖ dK

(∑

i∈N

Riξ̄
K
i − ri

)
≤

Θ1

K

|Φ(ξ̄
K
)− Φ(ξ∗)| ≤

Θ1

K
,

where Θ1 ,
∑

i∈N

[
1
τi
‖ξ∗i − ξ0i ‖2 + 4

κi
‖y∗‖2

]
+ 2

γ
‖w∗‖2,

ξ̄
K

= 1
K

∑K
k=1 ξ

k
and ȳK = 1

K

∑K
k=1 y

k.

Proof. Note the iterate sequence {xk,yk}k≥0 generated by
Algorithm DPDA-S in Fig. 1 is the same as the PDA iterate
sequence {xk,wk,yk}k≥0 computed according to (18) for
solving (17) when w0 = 0. Since the step-size parameters
{τi, κi}i∈N and γ are chosen satisfying the condition (19)
in Lemma 2 with strict inequality, the convergence condition,
Q̄ � 0, in Theorem 1 is true, where T = [R − M>] for
problem in (17). Therefore, Theorem 1 implies that (6) holds
for all K ≥ 1 with νx = νy = 1 and Bregman functions
Dx, Dy defined as in Definition 1. In particular, the result of
Theorem 1 can be written more explicitly for (17) as follows:
for any ξ ∈ R

n, w ∈ R
m|E|, y ∈ R

m|N |, and for all K ≥ 1,

L(ξ̄
K
, w̄K ,y)− L(ξ,w, ȳK) ≤ Θ(ξ,w,y)/K, (21)

Θ(ξ,w,y) ,
1

2γ

∥∥w −w
0
∥∥2

+
〈
w −w

0,M(y − y
0)
〉

+
∑

i∈N

1
2τi

∥∥ξi − ξ0i
∥∥2

+ 1
2κi

∥∥yi − y0
i

∥∥2
−

〈
Ri(ξi − ξ0i ), yi − y0

i

〉
,

where w̄K , 1
K

∑K
k=1 w

k. Note that under the assumption in
(19), Schur complement condition guarantees that

[
1
τi
In −R>

i

−Ri
1
κi
Imi

]
�

[
2
τi
In 0>

0 2
κi
Imi

]
.

Therefore,

Θ(ξ,w,y) ≤
1

2γ

∥∥w −w
0
∥∥2

+
〈
w −w

0,M(y − y
0)
〉

+
∑

i∈N

(
1

τi

∥∥ξi − ξ0i
∥∥2

+
1

κi

∥∥yi − y0
i

∥∥2
)
. (22)

Under Assumption 1, a saddle point for (17) exists. For
any saddle point (ξ∗,w∗,y∗), L(ξ∗,w∗,y∗) = Φ(ξ∗), ξ∗

is an optimal solution to (3) and My∗ = 0, i.e., for some
y∗ ∈ K◦ we have y∗

i = y∗ for all i ∈ N . The bounds
in the statement of the theorem are valid for an arbitrary
saddle-point of L in (17); that said, without loss of generality
we consider a specific saddle point (ξ∗,w∗,y∗) as defined

next. According to Theorem 1, (ξk,wk,yk) converges to a
saddle point of L in (17); let (ξ∗,w∗,y∗) be that point. Note

that (ξ̄
k
, w̄k, ȳk) converges to (ξ∗,w∗,y∗) as well. Define

z̃ ,
∑

i∈N Riξ̄
K
i − ri ∈ R

m. Since K is a closed convex

cone, it induces a decomposition on R
m, i.e., z̃1 = PK(z̃)

and z̃2 = PK◦(z̃) satisfy z̃ = z̃1 + z̃2 and z̃1 ⊥ z̃2. Note that
since z̃ = z̃1 + z̃2,

∥∥z̃2
∥∥ = ‖PK(z̃)− z̃‖ = dK(z̃). Define

ỹ = [ỹi]i∈N such that ỹi , 2‖y∗‖ 1
‖z̃2‖ z̃

2 ∈ K◦, and note

M ỹ = 0. Since z̃1 ⊥ z̃2,
∑

i∈N

〈
Riξ̄

K
i − ri, ỹi

〉
= 2 ‖y∗‖ dK

(∑

i∈N

Riξ̄
K
i − ri

)
. (23)

Since y∗ maximize L(ξ∗,w∗,y), and we set y0 = 0 and
w0 = 0, the definitions of ỹ and (21), (22) together imply

L(ξ̄
K
, w̄K , ỹ)− L(ξ∗,w∗,y∗) ≤ L(ξ̄

K
, w̄K , ỹ)− L(ξ∗,w∗, ȳK)

≤
1

K
Θ(ξ∗,w∗, ỹ) ≤

Θ1

K
. (24)

Therefore, using (23) and (24), we can conclude that

Φ(ξ̄
K
)−Φ(ξ∗) + 2 ‖y∗‖ dK

(∑

i∈N

Riξ̄
K
i − ri

)
≤

Θ1

K
(25)

where we used the fact that M ỹ = 0. Moreover, since

(ξ∗,w∗,y∗) is a saddle-point for L in (17), we clearly have

L(ξ̄K ,w∗,y∗)− L(ξ∗,w∗,y∗) ≥ 0; therefore,

Φ(ξ̄
K
)−Φ(ξ∗) + ‖y∗‖ dK

(∑

i∈N

Riξ̄
K
i − ri

)
≥ 0. (26)

which follows from y∗ ∈ K◦, i.e., 〈y∗, y〉 = 〈y∗,PK◦(y)〉 ≤
‖y∗‖ dK(y) for all y ∈ R

m. Thus, combining inequalities (25)

and (26) immediately implies the suboptimality result.

Define w̃ , 2 ‖w∗‖ M ȳK

‖M ȳK‖ . From (21) and (23), we have

L(ξ̄
K
, w̄K , ỹ)− L(ξ∗, w̃, ȳK) (27)

= Φ(ξ̄
K
)−Φ(ξ∗) + 2 ‖y∗‖ dK

(∑

i∈N

Riξ̄
K
i − ri

)

−
∑

i∈N

〈
Riξ

∗
i − ri, ȳ

K
i

〉
+ 2 ‖w∗‖

∥∥∥M ȳ
K
∥∥∥ ≤ 1

K
Θ(ξ∗, w̃, ỹ).

Hence, it is easy to see that
〈
w̃,M ȳK

〉
= 2 ‖w∗‖

∥∥M ȳK
∥∥.

Note that 0 ≤ L(ξ̄K ,w∗,y∗) − L(ξ∗,w∗,y∗) ≤
L(ξ̄K ,w∗,y∗)− L(ξ∗,w∗, ȳK). Hence, y∗ ∈ K◦ implies

0 ≤ Φ(ξ̄
K
)−Φ(ξ∗) + ‖y∗‖ dK

(∑

i∈N

Riξ̄
K
i − ri

)
(28)

−
∑

i∈N

〈
Riξ

∗
i − ri, ȳ

K
i

〉
+ ‖w∗‖

∥∥∥M ȳ
K
∥∥∥ .

Therefore, summing (27) and (28) leads to the desired infea-

sibility and consensus results.

III. NUMERICAL EXPERIMENTS

In this section, we use the Basis pursuit problem to test DPDA-

S and its variant, DPDA-D, which is proposed in a recent

preprint [1] to extend DPDA-S to handle time-varying com-

munication networks, and it requires each node i ∈ N to make

qk > 1 communication rounds with the neighboring nodes at

each iteration k (in contrast to qk = 1 for DPDA-S); and we

compare them with Prox-JADMM algorithm proposed in [16].

For the static case, communication network G = (N , E) is a

connected graph that is generated by randomly adding edges to

a spanning tree, generated uniformly at random, until a desired

algebraic connectivity is achieved. For the dynamic case, for

each consensus round t ≥ 1, Gt is generated as in the static

case. Let N , |N |. Basis pursuit problem has the following

formulation:

min
ξ
‖ξ‖1 s.t. Rξ = r, (29)



where R = [R1, . . . , RN ] ∈ R
m×nN and r ∈ R

m are the

problem data; ξ ∈ R
nN denotes the primal decision vector.

Problem in (29) can be rewritten in the form of (3):

min
[ξi]i∈N

∑

i∈N

‖ξi‖1 s.t.
∑

i∈N

Riξi = r. (30)

In a similar setting to [16], we set N = 100, m = 300, and

n = 10. Matrix R is randomly generated with each entry

sampled from Gaussian distribution and r = Rξ∗, where ξ∗

is randomly generated with 60 nonzero elements drawn from

the standard Gaussian distribution.

Fig. 2. Suboptimality

Fig. 3. Infeasibility

Fig. 4. Consensus violation

Fig. 2 and Fig. 3 illustrate the performance of algorithms

in suboptimality and infeasibility versus number of iterations.

Note that DPDA-S and DPDA-D use only local communica-

tion while this is not the case for Prox-JADMM which requires

a central node for coordination. In terms of convergence

behavior, our schemes can compete with Prox-JADMM. Fig. 4

illustrates consensus violation among dual variables, where the

dual consensus violation is defined as max(i,j)∈E ‖yi − yj‖.
As expected, the convergence rate for the static case is better

than dynamic case. Moreover, in the dynamic case conver-

gence of the consensus violation is slower when qk, the rate

of communication among nodes is lower.
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